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ADAPTIVE ALGEBRAIC MULTIGRID METHODS

M. BREZINA†, R. FALGOUT‡, S. MACLACHLAN†,

T. MANTEUFFEL†, S. MCCORMICK†, AND J. RUGE†

Abstract. Our ability to simulate physical processes numerically is constrained by our ability
to solve the resulting linear systems, prompting substantial research into the development of multi-
scale iterative methods capable of solving these linear systems with an optimal amount of effort.
Overcoming the limitations of geometric multigrid methods to simple geometries and differential
equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given
matrix. While this allows for efficient black-box solution of the linear systems associated with
discretizations of many elliptic differential equations, it also results in a lack of robustness due to
assumptions made on the near-null spaces of these matrices. This paper introduces an extension to
algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive
process. The principles which guide the adaptivity are highlighted, as well as their application to
algebraic multigrid solution of certain symmetric positive-definite linear systems.

1. Introduction. While the original development of algebraic multigrid (AMG)
began over twenty years ago (cf. [5, 17]), the current level of interest and research
activity is fairly recent. This dramatic increase is probably due mostly to the poten-
tial of these methods for solving very large problems arising from partial differential
equations with irregular grids and varying coefficients. See, for example, [22, §A.8],
or [1]–[24] and their cited references.

By the term algebraic multigrid, we mean the class of solvers based on multigrid
principles that depend little or not at all on geometric information about the problem,
but instead attempt to use basic concepts of “algebraic smoothness” (see Section 2)
to determine effective coarsening and/or relaxation processes. Solvers of this type
typically assume some defining characteristic of “algebraic smoothness” that specifies
error components that are not quickly eliminated by the relaxation that is being used.
For example, in standard AMG (cf. [20]), all such components are assumed to vary
slowly along so-called strong connections in the matrix, or, in standard smoothed
aggregation (SA; cf. [24]), to be represented locally by a few prototype vectors sup-
plied by the user. While appropriate use of the characteristic of algebraic smoothness
seems essential for obtaining effective solvers, these additional assumptions limit the
scope of applicability of these methods. In many important cases, errors missed by
standard relaxation processes can vary substantially along strong matrix connections,
and, in many cases, even the concept of strength of connection is not well understood.
Moreover, supplying a fully representative set of prototypical smooth components is
not always easy or possible in practice.

The principal aim of the adaptive approach developed here is to eliminate or
substantially reduce this reliance on the additional assumptions usually present in
these methods. The basic idea is to test the initial version of the given solver on the
homogeneous problem (Ax = 0) to determine its performance and expose whatever
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types of errors it cannot effectively handle. The resulting prototype errors that these
tests produce are then used to improve the algebraic multigrid process.

The concept of using a multigrid algorithm to improve itself began with standard
AMG [17], where interpolation was adjusted to fit vectors obtained by relaxation on
the homogeneous problem. In [5], a variation of this idea was used for recovering typ-
ical AMG convergence for a badly scaled scalar elliptic problem. While the method
there was very basic and used only one prototype, it contained many of the ingredi-
ents of the adaptive process developed here. These concepts were developed further
in [16, 18, 19, 21]. The idea of fitting of eigenvectors corresponding to the smallest
eigenvalues was advocated in [16] and [21], where an AMG algorithm determining
these eigenvectors through Rayleigh quotient minimization was outlined. These vec-
tors were, in turn, used to update the AMG interpolation and coarse-level operators.
Most of these ideas were later summarized in [16].

In many ways, using algebraically smooth vectors in the definition of interpola-
tion represents the next logical step in improving the interpolation operators used
in robust geometric and algebraic multigrid methods. Alcouffe et al. introduced the
idea of operator-induced interpolation in [1]. This improvement on the previously
used geometric interpolation approach opened up a much larger class of problems to
black-box multigrid solution.

In the present paper, we use an operator-induced interpolation approach as well,
but also rely on an automatic process that supplies representative smooth components
to ensure optimal performance. By integrating information regarding algebraically
smooth vectors into the definition of interpolation, we develop a multigrid scheme that
is hopefully optimal for elliptic problems where the discrete system is not necessarily
given in terms of an M-matrix. This operator- and relaxation-induced interpolation
approach can, if properly implemented, greatly enlarge the class of problems that
admits optimal performance by a black-box multigrid technique.

We also introduce the idea of adaptivity into algebraic multigrid. While classical
multigrid methods can be viewed as stationary iterative methods [2], the method
presented here is dynamic. In fact, we propose using the method itself to drive its own
iterative improvement. A “bootstrap” AMG method that is similar to the approach
developed here was recently proposed for the classical AMG setting by Brandt [4, 6].
The work presented here is the application to AMG of the methods presented in [8].

Several other attempts have been made to allow for the solver itself to determine
from the discrete problem the information required to solve it successfully, without
a priori assumptions on the form of the smooth error. These include the methods
of [7, 9, 10, 13]. All of these methods, however, have in common their requirement
that the local finite element matrices of the problem be available, and they construct
the multigrid transfer operators based on the algebraically smooth eigenvectors corre-
sponding to local stiffness matrices assembled over element agglomerates. Although
they can achieve encouraging convergence rates, their need to construct, store, and
manipulate the coarse-level element information typically leads to increased storage
requirements compared to those of classical AMG or standard SA. The method we de-
scribe below attempts to achieve the good convergence properties of the element-based
methods without the overhead of element storage that they require.

We refer to the approach developed here as adaptive because it involves self-
testing to expose slowly-converging error components and adaptation of the scheme’s
components to improve itself. The acronym αMG is used to refer to the general class
of multigrid methods of this type to suggest their primal algebraic nature: we have
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in mind methods that only use the defining characteristic of smoothness and must
use an automatic algebraic process to determine additional characteristics that enable
effective determination of the full MG algorithm. The additional acronyms αAMG
and αSA, respectively, are used to refer to the specific AMG and SA versions of αMG.

In the next section, we give a brief description of standard AMG to set the stage
for the development of αAMG in the following sections. Section 3 provides an intro-
duction into the adaptive framework and develops some fundamental principles that
guide our construction of the adaptive process. In Section 4, we discuss details of the
interpolation scheme used, as well as some of its theoretical properties. Some impor-
tant details of implementation are discussed in Section 5, and numerical performance
is illustrated in Section 6.

2. Standard AMG. The classical AMG algorithm begins with the defining
property of algebraic smoothness that, on average, the residual is small after a few
sweeps of relaxation: (Ae)i ≈ 0 for each point i. It then uses the assumed additional
property that these smooth errors vary slowly along strong matrix connections, which
is typical of naturally-formulated discrete elliptic systems. AMG proceeds to deter-
mine a coarse-level system whose solution, when interpolated back to the fine level,
provides a good correction to such smooth fine-level errors. This is basically a task of
choosing coarse variables and then determining interpolation based on the definition
of smoothness and the additional, assumed characteristic. The aim is to approximate
all algebraically smooth errors well by interpolation, and then use standard variational
processes to define the other coarsening components.

To construct interpolation to approximate a general smooth error, e, we use the
premise of a small residual (that, for example, ‖Ae‖ � ‖A‖ · ‖e‖A) to conclude that

aiiei ≈ −
∑
j 6=i

aijej . (2.1)

Now, suppose that a coarse set of points has been chosen that forms a subset of the
fine degrees of freedom (DOFs). We do not discuss how this might properly be done
here, but instead refer the reader to [21], for example. Then, the fine-level DOFs can
be represented as {1, 2, . . . , N} = C ∪ F , where C is the set of coarse-level points
and F is the set of remaining fine-level points. Since A is sparse, we also introduce
“neighborhood” notation: Ni = {j : aij 6= 0}, Ci = C ∩ Ni, and Fi = F ∩ Ni.
Equation (2.1) can then be rewritten as

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek. (2.2)

Were the last sum not present in (2.2), this expression could be used to define interpo-
lation because it gives the F -point value, ei, approximately as a sum of the Ci-point
values. The aim is therefore to “collapse” the connections from point i to the points
k ∈ Fi onto the points j ∈ Ci ∪ {i}. That is, we want to set aik, k ∈ Fi, to 0 while
adjusting aij , j ∈ Ci, in some way to compensate for the inaccuracy this elimination
introduces. The main assumption needed to collapse the stencil is that the values of
smooth e at Fi points can be written in terms of its values at points in Ci ∪ {i}:

ek ≈
∑
j∈Ci

wkjej + wkiei, k ∈ Fi. (2.3)
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This expression could then be substituted into the latter sum in (2.2) to obtain an
expression for ei in terms of ej , j ∈ Ci, which is exactly the aim. Note that (2.3) is a
special form of interpolation from Ci∪{i} to Fi. This special interpolation formula is
used in the stencil connections to determine the final interpolation formula used, so
the overall process is sometimes called “twice-removed” or “iterated” interpolation.

In classical AMG algorithms, the {wkj} in (2.2) are determined by {aij} and
{akj} based on the additional assumption that e is constant along certain of these
connections. In practice, the Ruge-Stüben algorithm [21] for collapsing F −F connec-
tions relies on identifying them as being either strong or weak. We do not need the
distinction for this purpose in the algorithm presented below. This sense of strength
of connection is also important for determining the C points in the classical AMG
algorithm, although there are other possible ways to accomplish this selection process
(especially notable being the recent work on compatible relaxation; cf. [12, 14]). We
do not discuss the selection process further, except to say that it is of primary im-
portance to the efficiency and success of an algebraic multigrid method: the coarse
level must support accurate approximation of algebraically smooth error using only a
small fraction of the fine-level points.

Once a set of coarse points, C, and an interpolation operator, P , have been
chosen, we must still choose a restriction operator, R (for transferring the residuals
to the coarse level), and a coarse-level operator, Ac (for defining the coarse-level
correction equation). Assuming that A is a symmetric positive definite matrix, it is
natural to define these operators by the so-called Galerkin conditions (cf. [21]):

R = PT and Ac = RAP.

These definitions arise from finite element minimization principles and are a result of
choosing R and Ac so that the coarse-level correction minimizes the fine-level A-norm
of the error over all such corrections.

AMG is a generalization of classical geometric multigrid. It is an efficient solver
for many problems, including those involving discretizations on stretched or irregular
grids, or discretizations of many problems with anisotropic or variable coefficients.
There are, however, still many problems for which classical AMG is not effective,
including problems with highly anisotropic or highly variable coefficients and those
coming from the discretization of certain systems of PDEs such as linear elasticity.
Simply put, the further the algebraically smooth components of a problem are from
being locally constant, the more the performance of classical AMG suffers.

3. The Adaptive AMG Framework. The details of the αAMG algorithm are
quite complex. We arrived upon them by careful consideration of basic principles of
the methodology of an adaptive algorithm. For this reason, the discussion focuses on
these basic principles before the particular details. We restrict our attention for the
remainder of the paper to the case that the n × n matrix, A = (aij), is symmetric
positive definite, although most of what is developed applies to more general cases.
Our aim is to develop an algebraic multigrid process to solve the matrix equation,

Ax = b.

3.1. Algorithm. An efficient multigrid process for solving Ax = b relies on the
appropriate complementarity of relaxation and coarse-grid correction. Because of
this, we view the goal of the adaptive process as the development of a representative
collection of vectors for which the chosen relaxation process is inefficient. In its most
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basic form, the adaptive process would be quite simple - relax on a significant number
of vectors to expose slow-to-converge components, and then choose interpolation to
fit these vectors. Such an approach is, however, quite inefficient and a multiscale
viewpoint proves more useful.

Suppose we know matrix A, but nothing more. Relaxation is then the only
possible way to expose the algebraically smooth components we are interested in.
With no further knowledge, however, there is no way of knowing how many distinct
components are needed to achieve good results. Experience (and, in the case of SA,
theory [23]) has shown that, for discretizations of second-order scalar elliptic PDEs, a
single component is sufficient, whereas six components may be needed for a problem
such as 3D linear elasticity. To arrive at an optimal solver with a minimal amount
of work, it thus seems necessary to start with a single vector and introduce new
prototypes as the evolving method proves inadequate.

The situation is now that we have a given matrix and seek to find a single al-
gebraically smooth vector upon which to base interpolation. Relaxation alone can
achieve this, simply by iteration on the homogeneous problem. However, this can
require a significant number of relaxations, and so we seek to expose algebraically
smooth components through multiscale development. After just a few steps of relax-
ation on the homogeneous problem on the finest grid can quickly reduce a significant
portion of a random initial guess, the remaining error can be said to be locally alge-
braically smooth. If this prototype is used locally to define interpolation from some
preselected coarse grid, then a coarse-grid problem that adequately represents the
algebraically smooth error on the fine grid can be created. We can now iterate to an
appropriate coarsest grid and interpolate a prototype of the smooth error to all grids.
Proceeding recursively, this resembles a full approximation scheme multigrid for the
algebraically smooth component, rather than the usual correction scheme method.

In this manner, a good prototype of a single algebraically smooth component
can be determined and the resulting solver tested. If it proves sufficient, then the
adaptive stage is complete. Inefficiency in the resulting solver indicates that relaxation
and coarse-grid correction are not yet perfectly complementary, and that there are
distinct algebraically smooth components that are not being accounted for. Since
these components are being reduced neither by relaxation nor coarse-grid correction,
they can be exposed by an iteration as above with the current solver taking the place
of relaxation. This may be repeated until acceptable convergence rates are attained.

Thus, we can sketch the adaptive procedure as
1. Let k = 1 and x1 be a random vector. Define, for all grids l, the methods

SOLVEl(xl,bl) to be ν relaxation sweeps on Alxl = bl.
2. SOLVEk(xk,0).
3. If not sufficiently coarsened, form interpolation and its coarse-grid operator.

Let xk+1 = (xk)c (that is, xk evaluated at the grid k+1 points) and k = k+1.
Goto Step 2.
Otherwise, continue.

4. While k > 1, let k = k − 1, interpolate the coarse-grid approximation, xk =
Pxk+1, and run SOLVEk(xk,0).

5. Let k = 1 and x1 be a random vector, Define, for all grids l, SOLVEl(xl,bl)
to be ν current V-cycles on Alxl = bl. If performance of SOLVE1(x1,0) is not
acceptable, go to Step 2.

3.2. Principles. Perhaps the easiest way to understand the adaptive methodol-
ogy is to begin with the principles on which it is based. Here we list the core ideas that

5



motivate and provide a foundation for the αMG methods, with the primary focus on
the αAMG scheme. The pragmatic reader may prefer to defer reading this discussion
until after Section 4.

Smoothness. The concept of algebraic smoothness is of utmost importance in
achieving an optimally efficient algebraic multigrid method. Since we only allow re-
duction of the error through the processes of relaxation and coarse-grid correction, the
algebraically smooth error (which, by definition, is slow to be resolved by relaxation)
must be accurately corrected from the coarse grid. That is, interpolation must be
very accurate for algebraically smooth components. In fact, a stronger requirement is
imposed by the eigenvector approximation criterion that, for a given eigenvector, u,
of A, interpolation must reconstruct u to an accuracy proportional to its eigenvalue
[3, 15].

The algebraic multigrid methods considered here are based on some defining char-
acteristic of what algebraic smoothness means. This definition generally amounts to
articulating an algebraic property of the errors that the given relaxation process can-
not effectively reduce. For example, classical AMG is usually developed based on
properties of a polynomial iterative method such as the Richardson iteration:

x← x− 1
‖A‖

(Ax− b).

It is easy to show that the error, e = x − A−1b, converges slowly in the
A-norm, ‖e‖A =

√
< Ae, e >, if and only if e yields a small generalized Rayleigh

quotient:

RQA(e) =
< Ae, Ae >

‖A‖ < Ae, e >
.

Proper use of this defining property of algebraic smoothness gives AMG its potential
for optimal performance over a wide range of problems. It enables coarsening processes
that, rightfully, depend on the matrix and hopefully capture the errors that relaxation
cannot eliminate.

Almost all algebraic methods, however, make additional assumptions about al-
gebraically smooth error that allow them to capitalize on the special nature of alge-
braic smoothness that is assumed. For example, classical AMG rests on two main
assumptions: that the constant vector 1 must be interpolated exactly; and that al-
gebraically smooth errors vary slowly along strong connections. While this enables
effective treatment of many problems, it also restricts the class to which these algo-
rithms apply. Many discrete systems exhibit algebraically smooth errors that vary
dramatically across strong connections and many others offer no clear understanding
of what strength of connection even means. Also, as we discuss further in the next
section, the vector 1 is not necessarily a good representative of algebraically smooth
error. A major goal of the adaptive process is to capitalize on the definition of al-
gebraically smooth error without making additional specific assumptions about its
character.

Prototypes. A central idea in the development of αAMG methods is the use
of prototypes that serve as representatives of algebraically smooth error. In fact,
prototypes are used in the development of nearly all multigrid methods. As mentioned
above, for example, classical AMG uses the prototype vector 1 to build its matrix-
based interpolation coefficients (see Equation (2.1) and the discussion in Section 2).
αAMG differs in that it attempts to generate its prototypes automatically.
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Given a set of these prototypes, it is important to recognize that they should only
be used locally as representatives of algebraically smooth error. Otherwise, it would
not be possible to achieve optimality. As an illustration of this point, consider the fact
that the non-optimal preconditioned conjugate gradient method can be formulated
as an αMG method that uses the generated prototypes globally as representatives of
slow-to-converge error components (here, the smoother is the preconditioner and the
coarse-grid corrections are the Krylov subspace projections; see [11] for details). The
point is that, in general, errors that are left by relaxation consist of a large fraction
of the spectrum of the matrix, so that coarsening must effectively approximate O(n)
components with varying degrees of accuracy. The goal is to achieve this approxima-
tion property by only using a small number, O(1), of computed prototypes.

The use of a small number of prototypes to achieve approximation of a much larger
space is a cornerstone of multigrid methods. It is essential that each prototype be used
effectively as a representative of many components with similar local character. Recall,
again, the use of the vector 1 in the classical AMG method, where 1 is used locally
to define an interpolation whose range represents all smooth errors. This is analogous
to how local basis functions are used in finite elements: piecewise polynomial basis
functions are used locally as pieces of a global polynomial basis to represent smooth
components of the solution of the PDE. The global prototype is a representative of
many algebraically smooth components, and thus is used locally to determine an
interpolation operator that has many such smooth components in its range.

Self-Testing. Computation of a rich supply of prototypes can be done by care-
fully testing the algorithm as it evolves. These self-tests should be done on a problem
with known solution. The homogeneous problem, Ax = 0, is especially appropriate
because it avoids trouble with machine representation when the approximation is very
close to that solution. For our αAMG scheme, we can test the current version of the
algorithm on Ax = 0 by measuring the A-norm of the error of successive iterates.
This test serves a dual role: it signals when the algorithm is performing well enough
and it produces a good prototype when it is not. Assuming that enough iterations are
used, the prototype must be appropriate because it is algebraically smooth (relaxation
is not eliminating it), yet poorly represented by whatever current coarsening process
is being used, if any. This prototype can then be used in the underlying algorithm
precisely where it uses the additional smoothness assumptions. For classical AMG,
this means that the prototype would provide information on the correct coefficients
to use in eliminating the matrix connections to points that are only on the fine level.

While the homogeneous problem is important as a measure of performance be-
cause it has a known solution, other measures can be useful in monitoring the evolving
behavior and improving the prototypes. This issue is most clearly exposed when a
direct solver is used on the coarsest level, where solving the homogeneous problem
seems paradoxical: why solve Ax = 0 when all you presumably get is x = 0? At
this point, a simple approach is to just accept the prototype computed on the next
finer level so that the coarsest level is never really used in the adaptive process. How-
ever, this means that the prototype is never really improved there either. It may
be better to enhance the coarsest-level prototype by using a more precise measure
of smoothness. For our αAMG scheme, we can choose to improve x on the coarsest
level by minimizing the generalized Rayleigh quotient, RQA(x). This becomes less
clear when there are several prototypes because of the need to keep them separate. It
may be necessary to use a Ritz projection and perhaps a Rayleigh quotient involving
the correction operator from the current method (RQBA, where I − BA represents
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the current error propagation matrix) or a more sophisticated measure [12]. In the
scalar PDE case considered here, we have not yet found any need for improving the
coarsest-level prototype, so this is not addressed further in what follows. The Rayleigh
quotient can, however, be useful as a diagnostic tool in assessing how the adaptive
process is behaving.

Range of Interpolation. The primary aim of coarsening in any multigrid pro-
cess is to allow algebraically smooth error to be represented by the range of interpola-
tion. For the adaptive process, this means approximating the prototypes as much as
possible. When enough DOFs are used on the coarse level, it is possible to fit them
exactly: x = Pxc for some coarse-level xc. In our αAMG scheme, xc is chosen simply
as x restricted to the coarse points, and so x = Pxc only in the case that Ax = 0.

The fine-level problem is coarsened so that the coarse-grid representation of a
prototype is just as good as the fine-grid representation, but requires less effort to
resolve. For this reason, we can improve our representation of the near-null space on
the coarse grid, but only if the range of interpolation admits an algebraically smoother
component than the prototype. By using the prototype locally, we ensure that this is
possible. Thus, in the adaptive process, we overwrite each fine-level prototype by its
coarse-level interpolant that is, in general, a better prototype.

Optimality. Multigrid methods are useful solution techniques because they ex-
hibit optimal traits, such as O(N) or O(N log N) scaling in both number of operations
and storage. As such, any adaptive multigrid process should also retain this optimal-
ity. In particular, the adaptive process must not make requirements of the solver that
compromise the optimality of the overall process, and it must itself scale optimally in
operation count and storage.

Classical AMG controls complexity by its intricate way of determining the coarse
points and its careful use of the matrix entries. The adaptive approach assumes
that a suitable coarsening process is available (such as the compatible relaxation in
[12, 14]), and with the attendant assumption that there is sufficient reduction in
grid sizes from fine to coarse level. When fitting multiple prototypes, however, it is
tempting to abandon the tight control on the stencil of interpolation (to that of Afc,
the submatrix of A linking fine- to coarse-grid nodes) to allow for exact fitting of
more prototypes. This must be done with utmost care, as each new nonzero entry
in the interpolation operator can lead to new nonzero connections in the coarse-grid
matrix. Care must also be taken to ensure that the stencil of interpolation is not
too small: early experiments limited the size of Ci for each fine-grid point i to the
number of prototypes being fit. This led to an extremely inefficient algorithm because
a single prototype could only be used to define one-sided interpolation, and so multiple
prototypes were needed for good convergence even for second-order, scalar PDEs.

Constructing a prototype set of minimal size is important to practical success
and controlling the complexity of the algorithm. While the same near-null space may
be well-represented by a small number of very precise vectors or a larger number of
less-resolved prototypes, the costs of the adaptive process and, possibly, the result-
ing method increase with the number of prototypes. This is seen in αSA, where the
prototype set is locally orthogonalized when determining interpolation to ensure new
columns of the prolongator (and thus coarse-grid points) are not introduced unneces-
sarily [8]. For this reason, it is more efficient to consider improvement of the existing
candidate(s) than to add a new candidate. As prototypes emerge, we can consider
improvement of their representation by removing each in turn from the prototype
set, constructing the multigrid method based on this reduced set, and then applying
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the reduced multigrid method to the removed prototype. This either improves the
prototype as a representative of the smooth components that is not well-represented
by the rest of the prototype set, or signals that the removed prototype is not needed
in the set and the reduced multigrid algorithm can replace the previous one. In ei-
ther case, the prototype set is improved, either by reducing its size or enhancing its
representation of algebraically smooth error.

To ensure that the adaptive process is also optimal, adaptations are made when-
ever sufficient new information becomes known, but also only when the change is
expected to improve the overall algorithm. For example, we develop the algebraically
smooth prototype in a full approximation scheme manner. This means that the proto-
type on a given level is discarded when it can be improved from a coarser grid. We do
not, however, update interpolation or coarse-grid operators on the upward traverse of
the setup V-cycle. Such an adaptation would be wasted because operators at higher
levels will also change as the cycle moves toward the finest grid. For this reason, while
we allow for multiple V-cycles to be performed in the setup phase, the last V-cycle
always terminates at the coarsest grid.

Termination of the adaptive process must also be properly implemented in order
to maintain optimality. Experience has shown that improvement in the resulting
multigrid process becomes less cost-effective with the number of setup phases and
the total amount of relaxation in the adaptive step. A method with an acceptable
convergence factor may be attained after even a single adaptive step, and a second
adaptive step improves this factor by only a fraction of a percent. This may be
addressed by reducing the amount of relaxation per adaptive step to a single sweep on
each level, and monitoring the convergence of the prototype vector between sweeps (for
example, measuring its Rayleigh quotient). Unfortunately, the majority of the cost of
an adaptive step is in the computation of interpolation and coarse-grid operators and
not relaxation, so performing many adaptive steps is undesirable. For this reason,
we use the heuristic of allowing only a single setup cycle and choosing the number
of relaxations in this cycle to achieve convergence factors within a few percent of the
apparent optimal performance.

4. Interpolation for Adaptive AMG. Our goal in developing a new type of
multigrid method is to move away from the weaknesses of classical AMG schemes.
Thus, we first concern ourselves with generalizing the definition of interpolation in
AMG. The guiding principles for this generalization come from basic properties of all
multigrid algorithms:

• simple relaxation is inefficient for solving Ax = b on error components, e,
whose residuals, Ae, are small relative to e in some sense; and
• efficient multigrid performance depends on effective complementarity of re-

laxation and coarsening to cooperate to eliminate all error components.
In developing the new interpolation procedure, we consider the case of pure al-

gebraic coarsening; however, for practical reasons, we chose to first implement the
algorithm in the case of regular geometric coarsening. The numerical results pre-
sented in Section 6 are from this implementation in the case of a scalar PDE.

4.1. Definition of Interpolation. Since the success of our methods depends on
the complementarity of relaxation and coarse-grid correction, a good starting point
for defining interpolation is to consider a vector, e, that is not quickly reduced by
relaxation. Using a simple (point-wise) relaxation scheme, such as Gauss-Seidel, this
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also means that Ae ≈ 0, or

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek,

where, as in (2.2), we assume a splitting of Ni into Ci and Fi. Again writing error
ek, k ∈ Fi, as

ek ≈
∑
j∈Ci

wkjej + wkiei,

a general interpolation formula for point i ∈ F is then:

ei = −
∑
j∈Ci


aij +

∑
k∈Fi

aikwkj

aii +
∑
k∈Fi

aikwki

 ej . (4.1)

The αAMG interpolation is different from that used in classical AMG [21] in that
{wkj} are chosen to depend on both the entries in A and a (computed) prototype,
x(1), that represents many algebraically smooth components. How this prototype is
computed is the subject of Section 5.

To be specific about the choice of {wkj}, consider the idea of twice-removed
interpolation [5]. Suppose we have a point, i, whose neighbors have been partitioned
into the two sets, Ci and Fi. The problem of collapsing the F − F connections is
equivalent to that of determining a way to interpolate to point k ∈ Fi from points
j ∈ Ci (or, more generally, j ∈ Ci ∪ {i}). That is, we seek to write (as before)

ek =
∑
j∈Ci

wkjej , (4.2)

dropping the term wkiei, under the assumption that k is as strongly connected to
some point (or points) in Ci as it is to i. If there is a particular vector, x(1), that we
want to be in the range of interpolation, then we ask that (4.2) hold when e is replaced
by x(1). This constraint with one vector, x(1), fixes one DOF of the possibly many
for set {wkj}, but this specification leads to a unique Fi-interpolation formula if it is
taken to be of the form −D−1Afc, where Afc is the matrix of connections between
F and C, and D is a diagonal matrix. (This choice is motivated by the discussion in
[7].) D is thus determined by

dkkx
(1)
k = −

∑
j∈Ci

akjx
(1)
j

or

dkk =

−
∑
j∈Ci

akjx
(1)
j

x
(1)
k

. (4.3)

Thus, choosing wkj = d−1
kk akj in (4.2), the Fi-interpolation formula is

ek = −
∑
j∈Ci

akj

dkk
ej .
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Interpolation to i ∈ F , given by (4.1), then has the particular form

ei = −
∑
j∈Ci



aij +
∑
k∈Fi

aik
akjx

(1)
k∑

j′∈Ci

akj′x
(1)
j′

aii


ej . (4.4)

Note that the interpolation operator, P , as a mapping from C to F ∪C, then has the
form

P =
[

W
I

]
,

where W is the matrix of coefficients determined by (4.4).
This αAMG interpolation formula is a simple generalization of the classical AMG

formula that allows for a sense of smoothness that may differ from what AMG con-
ventionally uses. The primary assumption used in standard AMG to collapse F − F
connections is that the smoothest error component is constant [21]. Thus, classical
AMG interpolation is recovered from the formula in (4.4) by choosing x(1) ≡ 1.

The focus of this paper is on methods involving just one prototype vector, x(1),
appropriate for scalar PDEs. Note, however, that these concepts can also be general-
ized to systems. Consider discretizing a system so that its DOFs are located on the
same grid, i.e., there are d DOFs co-located at each node. Since we seek to gener-
alize the ideas from the scalar case, start by generalizing the notation: Akj becomes
the d × d matrix of connections between the DOFs located at nodes k and those
located at node j, the diagonal entries of D (Dkk) become d × d matrices, and x(1)

remains a single vector prototype. However, several more prototypes must generally
be used, which are denoted by x(2), . . . , x(d) and appended to x(1) to form the matrix
X(1) = [x(1), . . . , x(d)]. Its restriction to the d DOFs at node k is denoted by X

(1)
k .

The analogue of (4.3) is then

Dkk = −

∑
j∈Ci

AkjX
(1)
j

(X(1)
k

)−1

.

The Fi-interpolation formula for systems thus becomes

ek = −
∑
j∈Ci

D−1
kk Akjej ,

which yields the final nodal interpolation formula

ei = −A−1
ii

∑
j∈Ci

(
Aij +

∑
k∈Fi

AikD−1
kk Akj

) ej .

4.2. Theoretical Properties. One situation that can cause difficulty for classi-
cal AMG is when the matrix is simply rescaled. For example, if A is the discretization
of a Poisson-like problem, then it is generally true that A applied to 1 yields a relatively
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small residual: A1 ≈ 0. This means that constant vectors are indeed algebraically
smooth, as classical AMG presumes. Rescaling A by multiplying it on both the left
and the right (to preserve symmetry) by a positive diagonal matrix can dramatically
change this property. Thus, if A is replaced by Ã = SAS for some positive diago-
nal matrix S, then Ã(S−11) ≈ 0, so the new near-null space component is actually
S−11. If the diagonal entries of S have significant variation in them, then S−11 has
a significantly different character than does 1. For classical AMG, this can cause a
significant deterioration in convergence rates. This can be prevented if the scaling is
supplied to AMG so that the original matrix can essentially be recovered (as in [5],
but this is not always possible in practice. Fortunately, as the following result shows,
this causes no problem for αAMG, provided the scaled prototype can be accurately
computed.

Theorem 4.1. Given a positive diagonal matrix, S, and vectors x(1) and
x̃(1) = S−1x(1), then the convergence of αAMG on Ã with prototype x̃(1) (measured
in the Ã-norm) is equivalent to that of αAMG on A with prototype x(1) (measured in
the A-norm).

Proof. Given a coarse-grid set, C, and the complementary fine-grid set, F , parti-
tion A and S to have the forms

A =
[

Aff Afc

Acf Acc

]
and S =

[
Sf 0
0 Sc

]
,

so that

Ã =
[

SfAffSf SfAfcSc

ScAcfSf ScAccSc

]
.

The weights, w̃kj , for the matrix Ã are given by

w̃kj =
ãkj x̃

(1)
k∑

j′∈Ci

ãkj′ x̃
(1)
j′

=
skakjsjs

−1
k x

(1)
k∑

j′∈Ci

skakj′sj′s−1
j′ x

(1)
j′

= s−1
k wkjsj .

Equation 4.4 then gives (with some algebra)

ei = −
∑
j∈Ci

s−1
i


aij +

∑
k∈Fi

aikwkj

aii

 sjej , i ∈ F.

For i ∈ C, again simply take the value from the coarse-grid and assign it as the value
on the fine-grid. Thus, the interpolation operator, P̃ , is of the form

P̃ =
[

W̃
I

]
=
[

S−1
f WSc

I

]
= S−1PSc,

where P is the interpolation operator from the unscaled case. Further, considering
the coarse-grid operator, Ãc, note that Ãc = ScP

T APSc = ScAcSc, where Ac is the
coarse-grid operator from αAMG on A.

12



That is, the coarse-grid operator for the scaled problem is simply the scaled ver-
sion of the coarse-grid operator for the unscaled problem. Since standard relaxation
techniques such as Gauss-Seidel or Jacobi (both point-wise and block forms) are scal-
ing invariant (that is, if A is scaled to SAS as above, initial guess x(0) to S−1x(0)

and initial right side b to Sb, then the approximation generated changes from x(1) to
S−1x(1)), we see that the entire process is independent of any diagonal scaling.

Theorem 4.2. Theorem 4.1 extends to the systems algorithm, which is invariant
to diagonal scaling with pointwise relaxation and nodal scaling with nodal relaxation.

Proof. The proof is identical in form to the scalar case, and is thus omitted.

5. Determining x(1). Successful implementation of these schemes for interpola-
tion relies upon having an appropriate prototype vector, x(1) (or set of vectors, X(1)).
Since we rely on the complementarity of relaxation and coarsening, the best choice
for x(1) would be a representative of the vectors for which relaxation is inefficient.
Thus, a straightforward method for generating this prototype would be to start with
a vector that is hopefully rich in all components (i.e., eigenvectors of symmetric A),
relax on Ax = b for some b, and then determine the error in the approximate solution
after a sufficient number of relaxations.

We typically make use of relaxation schemes whose error-propagation matrices
have the form I − BA. While it is possible that the slow-to-converge modes of the
relaxation iteration, I − BA, are not modes for which Ae ≈ 0, in most practical
situations they are. In particular, for the pointwise relaxation schemes considered
here, the two descriptions of algebraically smooth error are equivalent. In fact, for
many choices of B, the true near-null space of A is accurately reflected in the vectors
for which relaxation is inefficient. Knowledge of this space could be used as it is with
standard AMG to determine an effective coarsening process. Our focus, however, is on
the case where this knowledge is inadequate or even unavailable. We thus concentrate
on the case that a good prototype, x(1), is not known.

Start with a vector generated randomly from a uniform distribution on (0, 1).
The consideration of positive vectors is motivated by the case of scalar, second-order
operators, which tend to have positive near-null space vectors. A more general choice
is appropriate when considering problems such as linear elasticity, but care must be
taken because the definition of interpolation for αAMG breaks down if x

(1)
i = 0. Such

a vector is, in general, not equally rich in all error components. However, in the scalar
PDE case, it tends to be rich enough that a few relaxation sweeps on the homogeneous
problem, Ax = 0, produces a good representative of the slow-to-converge components.
Note that the homogeneous problem is advantageous to use here because the prototype
is simply the error in approximating the exact solution, x = 0. Thus, starting with
a random initial guess and performing relaxation on Ax = 0 generates a prototype
vector, x(1), that represents the slow-to-converge components and that can then be
used in the interpolation formula developed in Section 4.

Unfortunately, generating the prototype by fine-grid relaxation alone is effective
only in terms of the first coarse level and is, in general, quite inefficient in a multilevel
setting. To produce a prototype that is smooth enough to represent the components
associated with very coarse levels, a multilevel scheme is needed. Here, we again mea-
sure smoothness by the eigenvector approximation criterion. Basing every interpola-
tion operator on a single component, whose Rayleigh Quotient is near the minimal
eigenvalue on the finest grid, requires significant smoothness in that component as
the eigenvector corresponding to this eigenvalue must be interpolated with accuracy
proportional to this small value. For coarser grids, such smoothness is much more
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Fig. 5.1. The setup scheme for determining x(1)

efficiently represented by calculation on these grids. Thus, we start with a random
guess on the fine level and perform a few (ν0) relaxation sweeps there to generate a
tentative x(1). Using this current prototype, an interpolation operator is computed
(as in Section 4) and the coarse-level and restriction operators are formed using the
Galerkin condition. We use injection (direct restriction of the values on the C-points)
to form a coarse-level initial guess, relax ν1 times and recurse to the coarsest level.
From this coarsest level, interpolate and relax ν2 times on the vector all the way
to the finest level, but do not recompute the coarse-level and restriction operators.
The cycle can then be repeated, using the resulting vector as an overall initial guess.
This cycling strategy is illustrated in Figure 5.1, where boxes indicate stages where
coarse-level operators are computed and circles indicate stages where only relaxation
is necessary. Note that since the multigrid operators are computed only on the down-
ward part of the cycle, no relaxation is necessary on the upward part of the final setup
cycle. As is discussed in Section 6, this procedure apparently yields multigrid solvers
with level-independent convergence factors tested up to 1024 × 1024 grids for many
scalar problems.

One important benefit of generating the initial prototype vector in a multilevel
fashion is the ability to implement a proper transition to simplicity in the algorithm.
That is, since we begin by relaxing on a random vector (assumed to be rich in all
components), it is easy to tell if relaxation is sufficient to solve either the fine grid
problem or one of the generated coarse-level problems. If this is indeed the case, then
no additional labor is needed in designing an algorithm because an efficient solver
already exists.

For systems and higher-order problems, an added wrinkle is the need to generate
multiple prototype vectors. We expect that a technique similar to the one described
above can generate the components well enough to produce an efficient multigrid
scheme, but further investigation is necessary to ensure that the generated prototypes
are rich enough and are not redundant. We expect that a strategy similar to the
one developed for αSA [8] can be used to produce an effective αAMG approach for
systems.

6. Numerical Results. To examine the feasibility of this approach, we imple-
mented a solver for the special case of a rectangular grid in two dimensions with
full coarsening. This restriction in generality has a notable effect on the range of
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problems that are able to be reasonably considered (anisotropy, for example, becomes
much more difficult to account for in this setting). However, examining problems
without such difficulties, we feel that a good initial indication of the performance of
this approach can be had. In particular, the aim here is to test the quality of the
interpolation operator, not that of the coarsening procedure. Indeed, given current
research into new coarsening techniques [14] it is difficult to say which coarsening
method would be most appropriate for comparison.

We consider several measures of the effectiveness of the algorithm. Of primary
importance is the total time to solution, given only the matrix equation Ax = b.
Solving a problem is defined here as reducing the residual by 10 orders of magnitude,
and the wall-clock time to solution on a modern desktop workstation (2.66 GHz
Pentium 4) is measured. Another relevant measure is the asymptotic convergence
factor of the cycle that αAMG produces. While setup costs may form a significant
portion of the cost of solving a linear system with a single right side, many problems
require repeated solution with multiple right sides (such as in implicit time-stepping).
In these cases, the (possibly large) setup cost can be amortized over the number
of solutions and the cost of only the solution stage is important. The asymptotic
convergence factor reflects this cost, as the lower the factor the fewer iterations are
required in the solution phase. We discard the usual AMG measures of grid and
operator complexity because, in the structured coarsening framework considered here,
these measures are constant for all fine-grid operators of the same mesh and stencil
sizes.

As discussed in Section 5, the setup may be performed in an iterative fashion.
This is an appealing feature because, in practice, convergence of the prototype vector
can be measured as an indicator of convergence of the method. This iteration is,
however, quite expensive as it involves computation of new interpolation and new
Galerkin coarse-grid operators at each iteration. Testing has indicated that it is
usually significantly more efficient to perform more relaxation sweeps (i.e., increase
ν0 and ν1) in a single setup cycle than it is to perform multiple setup cycles with fewer
iterations per cycle. Thus, in the results that follow, we perform only a single setup
cycle and track the number of relaxations (values of ν0 and ν1) necessary to achieve
highly efficient solver performance.

We consider four PDEs as test problems, all discretized using bilinear finite el-
ements on the canonical unit square. Problem 1 is Laplace’s Equation with pure
Dirichlet boundary conditions. Problem 2 is Laplace’s Equation with pure Neumann
boundary conditions. Problems 3 and 4 are

−∇ ·D(x, y)∇p(x, y) = 0,

with Dirichlet boundary conditions on the East and West boundaries and Neumann
boundary conditions along the North and South boundaries. For Problem 3, D(x, y)
is chosen as

D(x, y) =
{

10−8 (x, y) ∈ [ 13 , 2
3 ]2

1 otherwise .

For Problem 4, D(x, y) is assumed to be constant on each element and chosen to have
value 10−8 on 20% of the elements (chosen randomly) and value 1 everywhere else.

A significant advantage of the αAMG method is its invariance to diagonal scaling,
as shown in Section 4.2. Thus, for each of these problems, we consider the results of
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such scaling. A common scaling is to make the diagonal entries of A all have value 1,
using the diagonal matrix given by sii = 1√

aii
. For Problems 1-4 above, the problems

with matrices thus scaled are referred to as Problems 1u-4u (where the u refers to
the unit diagonal of the matrix). We also consider a more drastic scaling given by
sii = 105r, where again r is chosen from a uniform distribution on [0, 1] for each i.
We call these Problems 1r-4r (where the r refers to the random scaling).

A baseline for these problems is established by considering the performance of
standard AMG under the same assumptions (primarily that coarsening is performed
geometrically). Because we expect the scalings employed to destroy any sense of
strong connection in the matrix coefficients, we consider here a “strong-connection-
only” version of AMG. Wall-clock times and iteration counts are shown in Table 6.1,
while convergence factors are shown in Table 6.2.

64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.04 (9) 0.22 (9) 0.91 (9) 3.32 (9) 13.13 (9)
Problem 1u 0.05 (9) 0.24 (9) 0.86 (9) 3.33 (9) 13.15 (9)
Problem 1r 3.8 · 10−5 3.5 · 10−5 2.5 · 10−5 1.8 · 10−5 1.3 · 10−5

Problem 2 0.04 (8) 0.20 (8) 0.81 (8) 3.12 (8) 12.30 (8)
Problem 2u 0.10 (25) 0.77 (41) 4.58 (72) 28.49 (123) 5.8 · 10−9

Problem 2r 4.3 · 10−6 2.4 · 10−6 3.8 · 10−6 3.6 · 10−6 3.3 · 10−6

Problem 3 0.05 (10) 0.25 (9) 0.90 (9) 3.32 (9) 13.18 (9)
Problem 3u 0.08 (25) 0.74 (38) 4.51 (68) 26.79 (114) 3.5 · 10−10

Problem 3r 5.3 · 10−5 2.9 · 10−5 1.8 · 10−5 1.3 · 10−5 9.9 · 10−6

Problem 4 0.05 (12) 0.29 (12) 1.07 (12) 4.50 (14) 24.71 (22)
Problem 4u 0.17 (60) 3.20 (178) 2.0 · 10−6 1.7 · 10−5 1.1 · 10−5

Problem 4r 3.9 · 10−5 2.8 · 10−5 1.8 · 10−5 1.2 · 10−5 9.2 · 10−6

Table 6.1
Wall-clock time in seconds (and iteration count) (or residual reduction after 200 iterations in

case of failure) for standard AMG to reduce residuals by 10−10.

64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.106 0.115 0.121 0.126 0.132
Problem 1u 0.106 0.115 0.121 0.126 0.132
Problem 1r 0.991 0.996 0.996 0.996 0.996
Problem 2 0.070 0.072 0.072 0.072 0.073
Problem 2u 0.559 0.723 0.842 0.916 0.957
Problem 2r 0.990 0.991 0.992 0.992 0.993
Problem 3 0.128 0.129 0.133 0.138 0.143
Problem 3u 0.488 0.648 0.796 0.883 0.941
Problem 3r 0.995 0.997 0.996 0.996 0.996
Problem 4 0.200 0.220 0.275 0.334 0.559
Problem 4u 0.757 0.914 0.976 0.994 0.998
Problem 4r 0.996 0.996 0.996 0.996 0.995

Table 6.2
Asymptotic convergence factors (measured after at most 200 iterations) for standard AMG

These results show that classical AMG interpolation gives a scalable solver for
Problems 1, 2, and 3, coming directly from discretization. If, however, the discretiza-

16



tion matrices are scaled, then there is a significant increase in the needed work units
for solution, especially as the problem grows (but also on the coarsest grids). Improv-
ing upon the results from these unscaled problems is difficult, so our aim should be to
determine a balance where significantly improvement on the results from the scaled
problems is found, while not driving up the cost of solution for problems such as 1,2,
and 3. The results for the unscaled Problem 4 are typical of this situation where, as h
decreases, the problem becomes more difficult to solve due to the increase in internal
boundary points.

For the adaptive AMG method, we consider several questions around the same
problems. Since experience has shown that a single setup cycle is most efficient,
parameters ν0 and ν1 must be chosen such that this cycle yields an effective solver.
How to do so actually depends on our interests. For solving only the matrix equation
Ax = b for a single vector, b, choose ν0 and ν1 such that the total time to solution is
smallest. This may mean sacrificing performance of the solver to save cost of the setup
stage. For solving the matrix equation for many right sides, the parameters should be
chosen such that the solver performs optimally. We consider this latter situation, and
demonstrate that doing so does not severely impact the time-to-solution for a single
right side.

Our experiments were thus performed with the goal of (approximately) minimiz-
ing the asymptotic convergence factors of the resulting methods. We found that, for
Problems 1, 2, and 3, good asymptotic convergence factors could be achieved with
relatively small values of ν0 and ν1. For Problem 4, the same performance as standard
AMG on the unscaled system can be recovered with small values of ν0 and ν1. Table
6.3 shows the time required for the setup phase for given values of these parameters
and different grid sizes. As always happens when measuring computational perfor-
mance, the timings are accurate only to within a few hundredths of a second and so
there is some variation in the timings of program stages that require the same number
and ordering of operations.

Table 6.4 presents the asymptotic convergence factors for the methods resulting
from the setup stages as outlined in Table 6.3. Note that, for the first three problems
and for all grid sizes, αAMG achieves convergence factors bounded well below 1, with
very small growth as the mesh size decreases. For Problem 4, we see growth like that
in the standard AMG results. Note also that scaling the matrices has no affect on
our ability to determine an efficient solver for these problems.

Finally, in Table 6.5, we consider the total cost of solving Ax = 0 a single time,
with random initial guess, using the near-optimal solver. αAMG did not (and could
not be expected to) beat the overall performance of standard AMG on the four un-
scaled problems. However, the setup costs of adaptive AMG were not significantly
higher than those of AMG. On a 1024 × 1024 mesh, AMG setup required approxi-
mately 5 seconds of CPU, and so the adaptive setup needed between 30 and 120%
more time, but tended to produce a slightly better solver than classical AMG. For
these reasons, the overall cost of adaptive AMG is close to that of standard AMG
in the cases where standard AMG works well. When standard AMG fails, there is
no contest. Adaptive AMG was able to solve those problems that caused difficulty
for standard AMG in a small fraction of the time. Considering that 200 iterations of
standard AMG for a 1024 × 1024 problem took approximately 180 seconds, αAMG
was able to reduce the residual by over 4 orders of magnitude more in under a tenth
of the time on the first three randomly scaled 1024 × 1024 grid problems, and in a
sixth of the time for the fourth.
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64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.02 (2,2) 0.09 (2,2) 0.39 (3,3) 1.58 (4,5) 6.80 (7,7)
Problem 1u 0.01 (2,2) 0.10 (2,2) 0.36 (3,3) 1.51 (4,5) 6.64 (7,7)
Problem 1r 0.03 (4,3) 0.10 (5,5) 0.44 (8,7) 1.91 (11,11) 8.68 (16,17)
Problem 2 0.02 (2,2) 0.08 (3,3) 0.39 (5,5) 1.74 (8,7) 7.73 (12,11)
Problem 2u 0.02 (3,2) 0.08 (4,3) 0.39 (5,5) 1.69 (7,8) 7.56 (12,11)
Problem 2r 0.02 (5,6) 0.12 (8,7) 0.51 (12,11) 2.21 (18,18) 11.07 (28,28)
Problem 3 0.02 (2,2) 0.10 (4,4) 0.37 (4,4) 1.59 (6,6) 6.66 (7,7)
Problem 3u 0.02 (2,2) 0.07 (4,4) 0.40 (4,4) 1.59 (6,6) 6.66 (7,7)
Problem 3r 0.02 (5,4) 0.12 (6,6) 0.45 (8,7) 1.89 (10,11) 8.52 (16,16)
Problem 4 0.02 (2,2) 0.09 (3,2) 0.40 (5,4) 1.64 (6,5) 6.64 (6,6)
Problem 4u 0.01 (3,2) 0.10 (2,3) 0.42 (4,4) 1.65 (6,5) 6.62 (6,6)
Problem 4r 0.02 (6,5) 0.12 (9,9) 0.49 (13,12) 2.30 (19,19) 9.20 (21,20)

Table 6.3
Wall-clock time in seconds (and values of ν1, ν2) for adaptive AMG setup phase.

64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.068 0.081 0.078 0.080 0.079
Problem 1u 0.068 0.081 0.078 0.080 0.079
Problem 1r 0.080 0.072 0.077 0.078 0.080
Problem 2 0.080 0.080 0.077 0.080 0.079
Problem 2u 0.070 0.075 0.078 0.080 0.080
Problem 2r 0.080 0.080 0.080 0.079 0.080
Problem 3 0.076 0.098 0.098 0.109 0.111
Problem 3u 0.077 0.097 0.097 0.109 0.109
Problem 3r 0.078 0.099 0.097 0.113 0.113
Problem 4 0.200 0.223 0.274 0.327 0.551
Problem 4u 0.201 0.225 0.275 0.324 0.549
Problem 4r 0.206 0.227 0.279 0.331 0.565

Table 6.4
Asymptotic convergence factors for adaptive AMG.

These results are very much as we hoped. For the scaled problems, there is a
tremendous improvement in the amount of effort required for solution as compared
to the standard AMG-interpolation based results in Table 6.2. The solution phase
of the algorithm scales well across all 5 grid sizes, and the actual costs are quite
reasonable. It must be acknowledged, however, that once we account for the cost of
the setup phase of our algorithm, classical AMG is a slightly more efficient solver for
the unscaled matrices when we consider solving for only a single vector. Put simply,
if the algebraically smoothest component of an elliptic PDE is known exactly, αAMG
can do no better than designing multigrid interpolation based on that component.
Indeed, if this component is given as input to the adaptive AMG method for creating
the multigrid hierarchy, we can solve the problem with the same cost as classical AMG
on the unscaled problem, simply by using it as x(1) in Equation 4.4, as discussed in
Section 4.2.

7. Conclusions. The adaptive multigrid strategies outlined here provide an op-
portunity for the recovery of classical multigrid performance in cases where the near-
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64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.06 (8) 0.23 (8) 0.84 (8) 3.30 (8) 13.74 (8)
Problem 1u 0.04 (8) 0.20 (8) 0.83 (8) 3.35 (8) 13.69 (8)
Problem 1r 0.04 (7) 0.22 (7) 0.82 (7) 3.33 (7) 14.69 (7)
Problem 2 0.04 (8) 0.24 (8) 0.84 (8) 3.40 (8) 14.37 (8)
Problem 2u 0.05 (8) 0.26 (8) 0.86 (8) 3.47 (8) 14.56 (8)
Problem 2r 0.05 (7) 0.23 (7) 0.89 (7) 3.74 (7) 16.92 (7)
Problem 3 0.05 (8) 0.23 (8) 0.84 (8) 3.39 (8) 13.77 (8)
Problem 3u 0.05 (8) 0.23 (8) 0.85 (8) 3.54 (8) 14.05 (8)
Problem 3r 0.04 (8) 0.25 (8) 0.90 (8) 3.65 (8) 15.75 (8)
Problem 4 0.06 (11) 0.31 (12) 1.16 (12) 4.82 (14) 26.61 (23)
Problem 4u 0.05 (11) 0.29 (12) 1.11 (12) 4.79 (14) 27.45 (24)
Problem 4r 0.05 (11) 0.33 (11) 1.21 (12) 5.28 (13) 28.61 (22)

Table 6.5
Total solution wall-clock time in seconds (and iteration count) for adaptive AMG to reduce

residuals by 10−10.

null-space components of the matrix are not locally constant. This can be done in
both the case of a known non-constant near-kernel component or of an unknown
near-kernel component. The interpolation presented is a generalization of the clas-
sical Ruge-Stüben scheme and, when coupled with the multilevel prototype of the
near-null space it provides a scalable algorithm for matrix systems that the classical
interpolation does not.
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